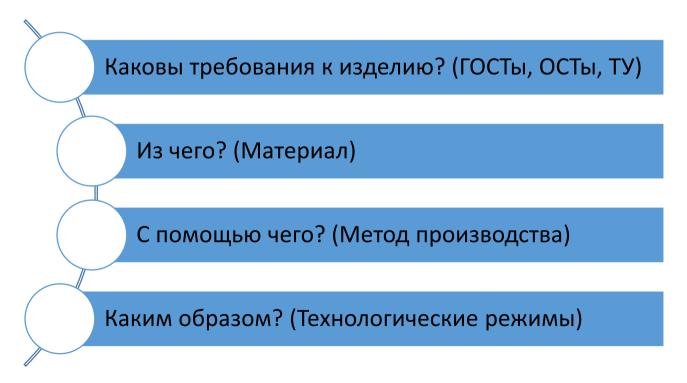


Интегральный подход к развитию и внедрению AT в промышленности. Опыт отраслевого интегратора ГК «Росатом»


Андрей Берюхов

Руководитель центра аддитивных технологий, к.т.н.

Ключевые аспекты развития АТ

Какие главные вопросы стоят перед разработчиком и изготовителем изделия?

Ключевые аспекты развития AT – видение «РусАТ»

Разработка материалов для АП

Технология (установка «Капля»)

- Газодинамическое распыление расплава
- Газ-энергоноситель: Ar
- Производительность (все фракции): 10÷15 кг/час
- Материалы: нержавеющие стали, жаропрочные никелевые сплавы
- Местоположение: ООО «НПО «Центротех» (г. Новоуральск, Свердловская обл.)

Материалы


- Нержавеющие стали
- Марки: 12X18H10T, 08X18H10T
- Фракция:
 - 10÷63 мкм (SLM);
 - 45÷200 мкм (DMD).
- Содержание 0₂: не более 0,1%

Оборудование для AT. SLM 3D-принтеры (1/5)

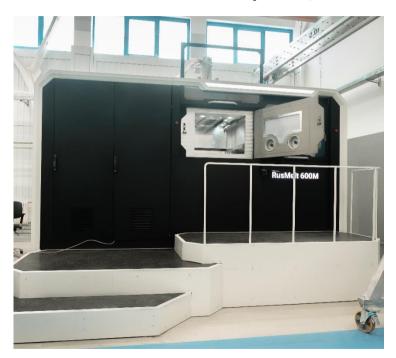
Демонстрационный образец SLM 3D-принтера RusMelt300M

Величина	Значения	
Рабочая зона построения	290х290х290 мм	
Кол-во лазерных источников	2 шт.	
Тип лазерного источника	Иттербиевый волоконный	
Мощность лазерного источника	2х500 Вт	
Сканирующая система	3-х осевая	
Кол-во сканаторов	2 шт.	
Материалы (сплавы)	Нержавеющие стали, никелевые сплавы	
Производительность (по стали)	2030 см ³ /ч	
Тип ПО (производитель)	RusMelt (OOO «PycAT»)	

- Введен в эксплуатацию (ЦАТ ООО «РусАТ», г. Москва) июль 2021.
- Назначение:
- демонстрация возможностей технологии SLM и оборудования потенциальным заказчикам;
- носитель узлов и платформа для испытаний в рамках НИР/ОКР по разработке оборудования и материалов;
 - печать сувенирной продукции и тестовых образцов.

Оборудование для AT. SLM 3D-принтеры (2/5)

Демонстрационный образец SLM 3D-принтера RusMelt300M



Оборудование для AT. SLM 3D-принтеры (3/5)

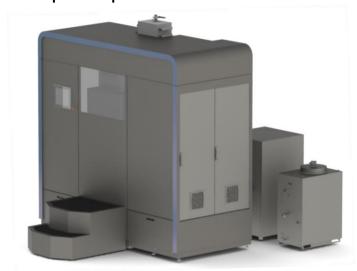
Опытный образец SLM 3D-принтера RusMelt600M

Величина	Значения	
Рабочая зона построения	590х590х500 мм	
Кол-во лазерных источников	3 шт.	
Тип лазерного источника	Иттербиевый волоконный	
Мощность лазерного источника	2х500 Вт, 1х1000 Вт	
Сканирующая система	3-х осевая	
Кол-во сканаторов	3 шт.	
Материалы (сплавы)	Нержавеющие стали, никелевые сплавы	
Производительность (по стали) [*]	до100 см ³ /ч	
Тип ПО (производитель)	RusMelt (OOO «PycAT»)	

^{*} Примеч.: Проектное значение.

- Планируемый ввод в эксплуатацию (ЦАТ ООО «РусАТ», г. Москва) сентябрь 2022.
- Назначение:
- носитель узлов и платформа для испытаний в рамках НИР/ОКР по разработке оборудования и материалов;
 - печать тестовых образцов;
 - отработка технологических режимов сплавления.

Оборудование для AT. SLM 3D-принтеры (4/5)


Разработка модернизированных версий SLM 3D-принтеров RusMelt 300M и RusMelt 600M

SLM 3D-принтер RusMelt 300M ver. 2.0

- Этап ТП (весна 2022)
- Сборка и испытания ОО конец 2023
- Организация серийного выпуска 2024.

SLM 3D-принтер RusMelt 600M ver. 2.0

- Этап ТП (лето-осень 2022)
- Сборка и испытания ОО конец 2023
- Организация серийного выпуска конец 2024.

Оборудование для AT. SLM 3D-принтеры (5/5)

Разработка комплектующих для SLM 3D-принтеров

2-х осевой сканатор

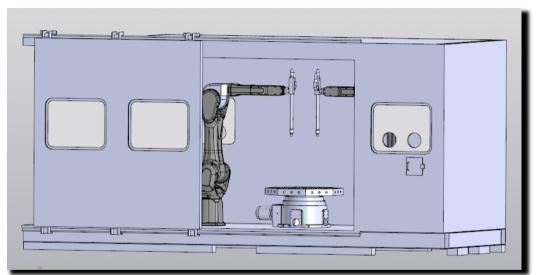
Величина	Значения
Размер рабочей зоны (поле сканирования)	1000х1000 мм
Максимальная мощность лазера	1000 Вт
Максимальная скорость сканирования	10 м/с
Разрешение	Не более 12 мкрад

Модельный ряд лазерных источников

Величина	Значения
Тип	Иттербиевый волоконный
Диапазоны мощности	200, 400, 700, 1000 Вт
Длина волны	1070 нм
Качество пучка, параметр М ²	1,2 (не более)

Оборудование для АТ. ЕВАМ-технология

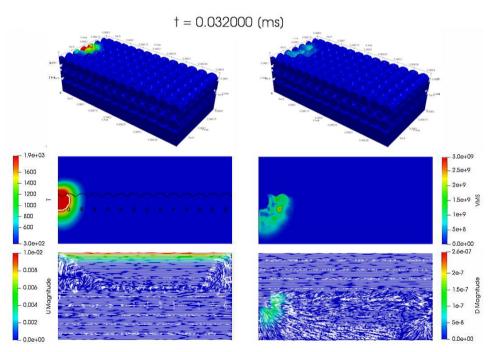
Опытный образец установки ЭЛУНП (ЕВАМ)


Величина	Значения	
Размеры области построения	1500х1200х1400 мм	
Диаметр планшайбы поворотного стола	1200 мм	
Диаметр применяемой проволоки	0,83,0 мм	
Скорость подачи проволоки	0,120 м/мин	
Мощность источника	60 кВт	
Тип генератора частиц	ЭЛП с термокатодом косвенного накала	
Рабочее ускоряющее напряжение	60 кВ	
Время работы катода ЭЛП до замены	100 ч	
Вес установки	23 т	

- Планируемый срок завершения ПНР (ЦАТ ООО «РусАТ», г. Москва) март 2022.
- Окончание первого этапа отработки режимов выращивания (12Х18Н10Т) декабрь 2022.

Оборудование для AT. DMD-технология

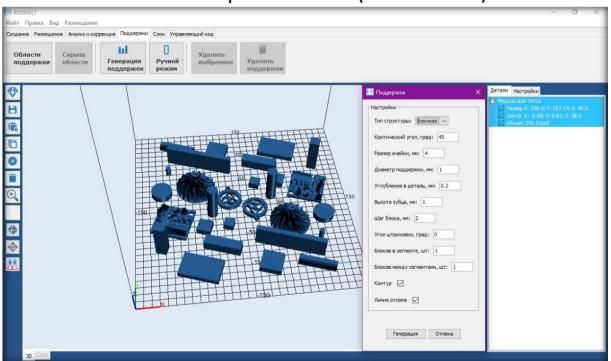
Опытный образец установки DMD


Величина	Значения
	эначения
Максимальный размер	
выращиваемого изделия:	
- Диаметр	2000 мм
- Высота	1000 мм
Максимальная масса выращиваемого	C000
изделия	6000 кг
Тип лазера	Иттербиевый
	волоконный
Количество лазеров	2 шт
Мощность лазера	2х4000 Вт
Количество РТК	2 шт
Производительность	2,5 кг/ч
Радиус действия РТК	1853 мм

- Планируемый срок завершения ПНР (ЦАТ ООО «РусАТ», г. Москва) декабрь 2022.
- Окончание первого этапа отработки режимов выращивания (08Х18Н10Т) октябрь 2022.

Программные продукты (CAD/CAE/CAM) (1/2)

Проект «Виртуальный 3D-принтер»


Моделирование процесса SLM 3D-печати:

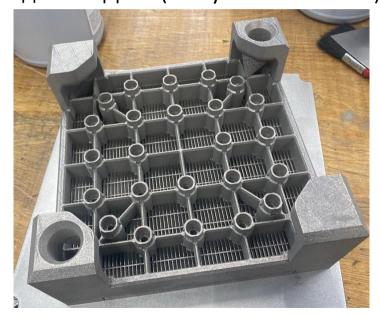
- расчет тепловых деформаций;
- расчет тепломассопереноса в ванне расплава и т.д.

Программные продукты (CAD/CAE/CAM) (2/2)

ПО «Слайсер «RusMelt» (SLM-печать)

САМ-модуль для подготовки УП для работы на SLM 3D-принтерах RusMelt300M и 600M

Отработка технологии 3D-печати изделий (НИР/ОКР)


Разработка технологии печати изделия «Антидебризный фильтр (АДФ-2) для ТВС-К» (Заказчик — АО «ТВЭЛ»)

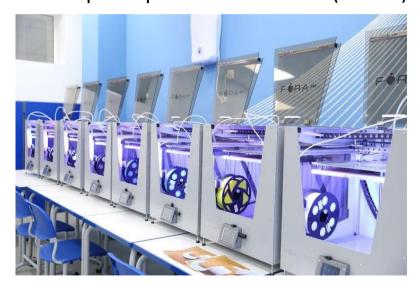
Образцы фрагментов геометрии (RusMelt300M)

- Материал 12X18H10T (ООО «НПО «Центротех»)
- Время печати 40 ч.

Изделие АДФ-2 (3D Systems DMP 350)

- Материал 12X18H10T (ООО «НПО «Центротех»)
- Время печати 62 ч.

Работы по внедрению АТ в рамках ГК «Росатом»



Поставка DMD-установки в АО «ОКБМ имени И. И. Африкантова»

- Дата поставки ноябрь 2021
- Изготовитель: ИЛИСТ СПбГМТУ

Оснащение лаборатории 3D-печати образовательного центра «Сириус» (г. Сочи) FDM-принтерами «FORA-150» (10 шт.)

- Дата поставки декабрь 2021
- Изготовитель: ФГУП «Комбинат «Электрохимприбор» (ГК «Росатом»)

Участие в разработке федеральных стандартов по АТ

Сотрудники ООО «РусАТ» участвуют в работе Технического комитета №182

- На текущий момент разработано и утверждено 38 документов.
- ООО «РусАТ» является разработчиком 12 утвержденных стандартов
 - 2020 год 7;
 - 2021 год 5 (один совместно с ФГУП «ВИАМ»).
- В процессе разработки (планируется утвердить в 2022 году) 5 стандартов
- В планах на 2022 год работа по 5 стандартам.

Кадровый вопрос в АП

Ежегодная внутриотраслевая конференция «Аддитивные технологии»

- Представители 25-ти предприятий ГК «Росатом»
- Кол-во участников 80 чел.

• 2-я по счету конференция прошла 13-14 мая 2021 года на площадке ЦАТ ООО «РусАТ»

Спасибо за внимание!

Берюхов Андрей Владимирович

Руководитель центра аддитивных технологий, к.т.н.

Тел.: +7 (495) 988-82-82, доб. 7242

Моб. тел.: +7 (912) 291 19 22 E-mail: avberyukhov@rosatom.ru

www.rosatom-additive.ru

25.01.2022